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The presence of impurities in a crystal lattice is one of the causes of
anelasticity of solids. Impurities in single crystals may lead to re-
laxation of the Snoek [1] and Zener [2] type, and affect the level of
dislocation internal friction [3]. In polycrystals there is yet another
mechanism of relaxation, i.e., the "uphill” diffusion of impurity
atoms in a random elastic stress field produced by the deformation
of randomly oriented crystals. This mechanism may contribute to
the internal friction, elastic aftereffect and transient creep. Diffusion
relaxation of this kind was first analyzed by Zener [4] who, having
concluded that the difference between the relaxation and nonrelaxa-
tion moduli cannot be accurately calculated, estimated the order of
magnitude of this difference; he based this estimation on the calcula-
tion of a second-order moment function from the reciprocal of the
Young's modulus. An implicit assumption in Zener's model is that
the elastic strain of a crystal is determined only by the orientation
of its crystallographic axes and on the external applied force field,
being independent of the strains of adjacent crystals. The inade-
quacy of such a model for a polycrystal is evident. Moreover, this
approach does not allow to obtain the distribution function of relaxa-
tion times. An accurate computation of the intensity of relaxation
in polycrystals of an arbitrary crystal symmetry, which takes into
account pair correlations between the separate grains, is presented
in this article.

1. Formulation of the problem. Considera polycry-
stal which consists of grains of different shape and
orientation. If the impurity concentration and strain
are assumed to be small, the elasto-diffusion set of
equations may be written in the form
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Equation (1.1) is the equation of uphill diffusion in
a heterogeneous anisotropic medium (for its deriva-
tion see appendix), and Eq. (1.2) is the equation of
equilibrium taking into account concentration stresses
{5, 6]. The summation convention applies, and the
symbols appearing in the equation have the following
meaning: c is the impurity atom concentration, n and
N are the number of, respectively, impurity atoms
and all the atoms in unit volume, Djj is the diffusion
coefficient, which depends on ¢ and may be quite sub-
stantial [7, 8], Djk° = Djx for ¢ — 0, by and ¥y are
the concentration stress and strain tensors, respec-
tively, V, is the molecular volume, R is the gas con-
stant, ujk = uj k is the distortion tensor, u is the dis-
placement tensor, &) is the strain tensor, q charac-
terizes the strength of the source of impurity atoms,
and f is the force density.

The elasto-diffusion set of equations (1.1), (1.2) is analogous to
the system of thermoelasticity equations, differing from it only in
the third term of the left side of the diffusion equation. It would
therefore be possible directly to use a method previously developed
for the computation of thermoelastic relaxation of polycrystals of
cubic symmetry. With lower forms of symmetry, however, direct
computation is quite tedious. For this reason the calculation of the
frequency dependence of the effective elastic constant tensor is re-
placed below by the computation of its values at frequencies w —> 0
and w — =, which gives directly the relaxation and nonrelaxation
values of this tensor and, consequently, the relaxation intensity.

Taking into account that the diffusion coefficient is
a kinetic characteristic and does not affect the degree
of relaxation, let us replace Djk by its effective value
Déik and linearize Eq. (1.1) by substituting for the
real concentration ¢ (in the diffusion coefficient D and
in the third term) a value c, averaged over the poly-
crystal. Then, for harmonic oscillations this equation
may be written in the form

Le = — q + DN/ *bimtim
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Determining the concentration and substituting its
value in (1.2), we find
Lyu = — ¢
(L) = VihigmV m + DXV bV * b1V o,
fe=hh—Vibpesx Lg=—6(r) (1.5)

Let us represent tensors Ajk{m and by as a sum
of the average value

Chinmy = Kbidim + pDinim, <higy = bixs
{(Dikim = 8ubim + SimBut — 2/sBixbim) »

and the fluctuation increment

Shikim = Miktm — (hikim)

It should be noted that averaging is carried out over
regions whose size is very much larger then the grain
size but small in comparison with the distance over
which there is a marked variation in the regular part
of the function. Then, the operator Lj; is split into
regular Q;; and random Rj}] components

Obik = b — (bud.  (1.7)

Qi = Ur hiktm) Vm + DATk b7 g % bim> Tms - (1.8)
Ry = 7ibhikimTm + Dxb x
X (Vidix*g # 8bimm + Tx8bik g * Bimm)
(Qu + Ra = Lu).- (.9)

Equating expression (1.8) for the regular component
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L of the operator to the equilibrium equation

Sing = — [ (1.10)

we find the tensor operator of the elastic moduli of the -

polycrystal

Asm (@) == (himmd + Dy, {bix\V%g # bnd. (1.11)
Hence, for the defect of the elastic moduli tensor
AAjk 1 in the zeroth approximation we find

AN = Al (00) — Al (0) = x0%udim + /mxquDmﬁ.

(ARG = CBbpg) - .12)

Here the first term gives the modulus defect due to
diffusion through distances ! which are of the order of
the strain field heterogeneities. The second term is
associated with diffusion through distances a of the
order of the grain size.

In the former case the relaxation time is quite large
(~12/D), while in the latter case it is substantially
smaller (~d?/D)..

It should be noted that in the case of uniform cyclic
deformation the first term in (1.12) should be assumed
equal to zero. In fact, the stress tensor in this case
is equal to

six = (hikim tem + DXt (B20udim2g %1 + bl 1)

[blm (‘ —_ l”) = <§bik (I‘) 8bim (I")>] . (1.13)

Denoting Fourier transforms by capital letters

F(k):geikvf(r)dv, F(r) = Se"’“ (k) dVy (1.14)

and taking into account relations

fal = F(0), G (k) = (Dk2 + io)?, (1.15)

we obtain

Vigx1 = — (D + iok) Ly = 1.16)

In the case of nonuniform deformation, e.g,, in
bending, impurity atoms will diffuse from compressed
regions to regions of tensile strains. The corres-
ponding defect of the modulus is obtained if it is taken
into account that in these circumstances AZ is con-
voluted with the function ujk(r). In the Fourier space
as w — 0 this leads to the multiplication of Ulk(k)
by ~D7L,

It follows from (1.12) that for uniform deformation
the correlation part of the defect of the tensor of
elastic moduli is determined in the zeroth approxi-
mation by correlations of the second-rank concentra-
tion stress tensor. As a result, in the case of cubic
crystal symmetry the correlation part of the defect of
the elastic moduli tensor in the zeroth approximation
is equal to zero; in the case of crystals of lower sym-
metry, it will be manifested in the presence of a shear
component of the stress tensor.

2. Calculation of the degree of relaxation in the
first approximation. Taking into account pair corre-

lations leads to the following expression for the re-
gular part of the displacement vector [9]:

Qi <wd + (Ripgpg % Ryd <u) = — f¢ (2.1)
where the Green's tensor function is given by
Qirgpq = — Bigd (1) (2.2)

For high frequencies the Fourier transform of the
Green's tensor G, (k) and the random tensor operator
R;; are equal to

!
Gpo (k) = it (e — ), R = VidhigmVm
R (2.3)
(p_T’ #K-’r“/sp)l
Substituting (2.3) in (2.1), we obtain
1 ikps i i
Adfin (00) = ~— g Alnf + g5 (24t + Aif) . (2:4)

The correlation tensors Ahet and AifFD are related

to the binary correlation function of the elastic moduli

tensor blplﬁ@g’ by equations

Bhikim () Shpqrs (1')> = by (v — 1) = Apys b (r — 1) (2.5)
Equation (2.4) coincides with the fluctuation incre-

ment to the elastic moduli tensor of a polycrystal cal-

culated in {10]. In the second limiting case, setting

w =0, we find

1
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Substituting (2.6) in (2.7) and (2.1), and performing
the appropriate transformations, we find the fol-
lowing expression for the correlation increment to
the averaged value of the elastic moduli tensor:

Al (0) = — gz (1= 5 o) A +
+ Ao Alkp]) + 2xb Aik (2 8)
15pp “Hmat 3K+ 4pp Clmep: .
Tensor Al mpg is given by
<6bik (1'> 6}‘41mpq (I")) = A;ﬁlpq 11? (l‘ - l") . (2- 9)

Subtracting (2.8) from (2.4), we find the corre-
lation increment of the first approximation to the de-
fect of the elastic moduli tensor.
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For a cubic crystal @ = 1. For lower symmetry Q >
>1. In the case of hexagonal symmetry for by = 1.5b
!

Qs e

3K )
=2

O =1 (14 K3 — 5 @—1.

In the case of zinc, for instance, having calculated
K and p from data in {10}, we obtain K = 6.71 and p =
= 2,75 x 10!! dyne/cm?, which gives Q; = 2.5 Q, = 4/27.
The binary correlation tensors in (2.10) are easily
calculated with the aid of relations

1

ik . rs ikpp 1 rspp
Almpp = 1_0 rspp Diklrm Almqq - T6 Arsquiklm 3,

ik 1 1 )
A’llmgg == ‘g‘ Agggéikalm + 10 (A:zzg Aggg ) Diklm‘ (2-11)

The scalar values in the right sides of these equa-
tions are easily calculated in the crystallographic co-
ordinate system.

3. Calculating total defects of the omnidirectional
compression and shear moduli, Using the relation

AK = (MM + AARY), (3.1)
we find
. b2Q rr
LK =40+ 35 (K)—(H/luﬁ Asipi- @®.2)

Here the first term describes relaxation which takes
place only in the case of nonuniform deformations.
This term will be nonzero for crystals with a sym-
metry lower than cubic.

The defect of the shear modulus is found from

po= Y10 (Asir — 3K). 3.3)
This gives
1 rs
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For a cubic structure, (3.4) simplifies to
— sz repg __ 18 y KPP
A= = &L 00

The values y and c¢; for cubic crystals are given by
expressions

Miktm = €180im - €2 (818km - Bimdir) + €5 21 8:04:01:0m;,
7

Y =YaTu. (3.6)
4. Calculating the relaxation time distribution func-
tions. To a given degree of relaxation Ay /i there
corresponds an internal friction peak whose height and
width are determined by the relaxation time distribu-
tion function f(7). To calculate f(7) it is necessary
to consider (1.11) and (2.1) without assuming w = 0
or w = oo,
As shown in [9], the relaxation time distribution
function is determined hy a coordinate dependence of
the corresponding binary correlation functions. Func-

tion f(7) is expressed through a function ¥ (r), pre-
viously introduced into the Fourier transform y(k), in
the following way:

4.1)
If the coordination dependence of all the binary cor-

relation functions is taken in the form

P (r) = exp (— r/a),

where «a is of the order of the crystal size, the dis-
tribution function is given by

4.2)

_ 943D~z P
O =~ arpy-

4.3)

In the presence of a distribution function, the height
of the internal friction peak is reduced by a factor of
two (in comparison with the peak of a standard linear
body) and becomes k '

o or
Qmax - 4 "!’L"" -

For the purpose of a quantitative estimate let us consider the
system Fe — C (of cubic symmetry) with 4.5% C at 1250° C. The
elastic constants of ci-iron (expressed in 10%! dyne/em?) are: ¢y = 11.4;
cg = 8.9; cg=13.6. The dimensioniess parameter y = 0.2 (see [11]).
This gives Au/p = 1.5 X 1073, hence Q %pax = 3.7 X 10™% This value
corresponds to a frequency vy, = 0.6Da™2. Using data cited in [12]. we
find D = 3.2 X 107 sec/cm? at T = 1950° C. For a grain size a = 107?
cm, the frequency corresponding to the internal friction peak will be
I cps.

These results indicate that the diffusion internal friction of poly-
crystals can be determined by experiment. The precise magnitude of
the internal friction peak may be slightly different, because the peak
at 1250° C was estimated on the basis of elastic constants at room
temperature and without taking into account the effect of carbon.
However, the order of the magnitude of the estimated intemal friction
peak should be correct.

5. Appendix. (Derivation of the equation of uphill diffusion in a
heterogeneous anisotropic medium.) For small strains uji and impurity
atom concentration ¢ in a heterogeneous medium, the free energy of
unit volume F can be expanded in a series in the parameters ujy and c.

If the expansion is limited to the quadratic approximation, we
obtain

F = Fo Yo Mttt — MiktndiTm® T o MigtmYinTime?

(¢c=n/N). (5.1)
Hence we find the chemical potential u
oF 1 i
p = =M — Ty by + F7 Be,
aF,
(POE an b =higmlim B= }‘iklmTilem>‘ (5.9

The particle flux density J is expressed in the usual way [13] by
the chemical potential

n
Ji=—F D09 (5.3)
where D i is the diffusion coefficient as ¢ — 0.
Substituting (5.2) in (5. 3) and taking into account that for dilute
solutions

wo=kTlnn, (5.4)



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 57

we find

fVs D;;0e
—J;=Dyo (1+ i )v,.n — e Vibas. (5.5)

Here Vj, is the molecular volume.
The change in the number of particles in unit volume per unit time
is

on ¢
= Vo, = ViDijan — ViDij"']?i" Vb
(D;; = D;;0[1 + cBVo/ RTY) . (5.6)

Relating this expression to the total number of particles in unit
volume, we obtain

ac Vo
T ViDij Vie+ T ViDijocvjblkulk =0. (5.7)

In the presence of sources of impurity atoms the equation of
uphill diffusion (5.7) will be nonuniform, as in(1.1) in the text.
Equation (1. 2) is obtained from (5. 1) by differentiating F with
respect to the strain tensor and substituting the result in (1.10).
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